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Different Orthocomplementations on the Subspace
Lattice of a Finite-Dimensional Complex Vector
Space†
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In this paper we prove, by using real closed fields and model theory, the following
result: for any integer n $ 3, there exist, on the lattice of all subspaces on the
vector space Cn, 2(2:0) orthocomplementations leading to nonisomorphic structures
of orthomodular lattices.

1. INTRODUCTION

In a Boolean algebra B, any element a has a unique complement a'

which is determined by the lattice structure of B: a' 5 ~{x P B.x ∧ a 5
0}. In other words, there exists at the most one structure of Boolean algebra
on a distributive lattice. As orthomodular lattices (OMLs) are generalization
of Boolean algebras, a question is: Do there exist on a bounded lattice two
nonisomorphic structures of OMLs [6, Problem 27]?

The problem is of interest in lattice theory as well as in the logicoalge-
braic approach to quantum mechanics because “the mathematical representa-
tion of the negative of any experimental proposition is the orthogonal
complement of the mathematical representative of the proposition itself” [3].

Birkhoff solved this problem by considering on the linear space Q4 two
scalar products leading to nonisomorphic OMLs of subspaces [2]. A more
technical solution, using infinite-dimensional quadratic form theory, was
given by Gross [5]. His method allows one to obtain a denumerable family
of nonisomorphic OML structures on the same bounded lattice.

† This paper is dedicated to the memory of Fred Rüttimann.
1 Institut Girard Desargues (UPRES A 5028), Université Lyon 1, France.
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In this paper, we consider a related problem: Find a bounded lattice of
infinite cardinal l carrying 2l nonisomorphic structures of OMLs (there exist
at the most 2l nonisomorphic OMLs of cardinal l). By using the theory of real
closed fields and a result of S. Shelah related to the number on nonisomorphic
models of an unstable theory, we prove that there exist on the lattice of all
subspaces on the vector space Cn, n $ 3, 2(2:0) orthocomplementations leading
to nonisomorphic structures of OMLs.

The paper is organized as follows. In the next section, we characterize
Hermitian forms defining isomorphic structures of OMLs on a vector space.
Section 3 is devoted to real closed fields and complex Hermitian spaces. In
the final section we prove the main result and give some concluding remarks.

2. ISOMORPHISMS OF OMLs OF SUBSPACES

If E is a vector space over a field K, then 6(E, K) denotes the modular
lattice of all subspaces of E. Let s be an isomorphism from a field K onto
a field K 8. A map L: E → E8, where E is a K-vector space and E8 a K 8-
vector space, is said to be s-linear if, for x, y P E and l P K,

L(x 1 y) 5 L(x) 1 L( y), L(lx) 5 s(l)L(x)

Any s-linear map induces a map FL: 6(E, K) → 6(E8, K8) defined by FL(M )
5 L(M ) 5 {L(x).x P M}. If L is a bijection from E onto E8, then FL is
an isomorphism between the lattices 6(E, K) and 6(E8, K8). All possible
isomorphisms are obtained in this way if dim E $ 3 [1; 8, Chapter 2, §2].

If E is an infinite-dimensional vector space, then there exists no ortho-
complementation on 6(E, K) [1, Theorem 2, p. 111] and if if the dimension
of E is finite and not less than 3, then the orthocomplementations on 6(E,
K) are induced by some special semibilinear forms. We expand this point.

Let g be an involutary antiautomorphism of the field K. A g-Hermitian
form is a map ^?, ?&: E 2 → K with the following properties:

• ^x1 1 x2, y& 5 ^x1, y& 1 ^x2, y& and ^x, y1 1 y2& 5 ^x, y1& 1 ^x, y2&,
(x, y, x1, x2, y1, y2 P E ).

• ^lx, my& 5 l^x, y&g(m) (x, y P E and l, m P K ).
• ^x, y& 5 g(^y, x&) (x, y P E ).

The form is said to be defined if ^x, x& 5 0 implies x 5 0.

Example. Let g be an involutary antiautomorphism of a field K. For
any integer n . 0, the map

((xi)1#i#n, ( yi)1#i#n) → o
n

i51
xig( yi)

is a g-Hermitian form on the vector space Kn. Remark that this form is
defined if and only if (n

i51 xig(xi) 5 0 implies xi 5 0, i P [1, n].



Orthocomplementations 567

Proposition 1 [3]. Let E be a left vector space on a field K with 3 #
dim E , `. The orthocomplementations of the lattice 6(E, K) are all the maps

F P 6(E, K) → F ' 5 {x P E.^x, F & 5 0} P 6(E, K)

where ^?, ?& is a defined g-Hermitian form on E 2. A g-Hermitian form ^?, ?&
and a g8-Hermitian form ^?, ?&8 induce the same orthocomplementation if and
only if there exists k P K, k Þ 0, such that for all x, y P E, l P K,

^x, y&8 5 ^x, y& ? k, g8(l) 5 k21 ? g(l) ? k

This proposition allows us to characterize Hermitian forms leading to isomor-
phic OMLs of subspaces.

Proposition 2. Let ^?, ?& be a g-Hermitian form, ^?, ?&8 be a g8-Hermitian
form on the K-vector space E, with 3 # dimE , `, and let ', '8 be the
corresponding orthocomplementations on 6(E, K). The orthocomplemented
lattices (6(E, K), ') and (6(E, K), '8) are isomorphic if and only if there
exists a s-isomorphism L: E → E and k P K, k Þ 0, such that

^L(x), L( y)&8 5 s(^x, y&) ? k, s21g8s(l) 5 k21 ? g(l) ? k

(x, y P E, l P K ) (1)

Remark that relations (1) become

^L(x), L( y)&8 5 k ? s(^x, y&), s21 + g8 + s 5 g

if the field K is commutative.

Definition 1. Two defined Hermitian forms on a K-vector space E are
said to be orthoequivalent if they yield to isomorphic structures of OML on
6(E, K).

Now, if we want to find a vector space Kn with a maximal number of
nonisomorphic structures of OMLs on its lattice of subspaces, we are con-
fronted with the following:

1. Find a field K with an abundance of involutary automorphisms.
2. Characterize in different ways Hermitian forms which are

orthoequivalent.

The field of complex numbers has 2(2:0) involutary automorphisms and so it
seems appropriate to use complex vector spaces. The next proposition will
provide a solution to the second question.

If f is an automorphism of a field K, then we denote by Ff the fixed
field of F: Ff 5 {x P K. f (x) 5 x}.
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Proposition 3. If a g-Hermitian form and a g8-Hermitian form on the
same vector space E over a commutative field K, with 3 # dim E # `, are
orthoequivalent, then the fixed fields Fg and Fg8 are isomorphic.

Proof. If the two Hermitian forms are orthoequivalent, then, by Proposi-
tion 2, there exists an automorphism s of K such that s21 + g8 + s 5 g. If
x P Fg, then (g8 + s)(x) 5 (s + g)(x) 5 s(x) and so s(x) P Fg8. Conversely,
if s(x) P Fg8, then (g8 + s)(x) 5 s(x) and (s21 + g8 + s)(x) 5 x. As s21 +
g8 + s 5 g, g(x) 5 x, which proves that x P Fg. So s(Fg) 5 Fg8 and the
fixed fields of g and g8 are isomorphic.

In the next section we will characterize fixed fields of involutary auto-
morphisms of C. For this aim, it is useful to introduce, more generally, real
closed fields.

3. REAL CLOSED FIELDS

A commutative field K is said to be real closed if it fulfills one of the
following equivalent statements:

1. The characteristic of K is 0, 21 has no square root in K, and K[i]
is algebraically closed (i.e., K[X ]/X 2 1 1 is algebraically closed).

2. K is an ordered field and no algebraic extension of K can be ordered.
3. K is an ordered field in which polynomials satisfy the condition

that, if P(X ) P K[X ], a, b P K, and P(a)P(b) , 0, then there exists
c P K between a and b such that P(c) 5 0.

By using the third statement, it is easy to check that real closed fields constitute
a first-order theory in a language obtained by adding to the language of fields
a binary relation symbol corresponding to the order relation.

Real closed fields are also closely related to fixed fields of involutary
automorphisms of algebraically closed fields, and in the case of complex
numbers we have the following result.

Proposition 4. The correspondence

g → Fg 5 {x P C.g(x) 5 x}

maps the set of all involutary automorphisms of C, different from the identity,
bijectively onto the set of all real closed subfields F of C such that [C : F ]
5 2.

Abridged Proof. If g is an involutary automorphism of C, different from
the identity, then the automorphism group generated by g is of order two
and by the theorem of Artin, [C : Fg] 5 2. As i ¸ Fg, C 5 Fg[i] and Fg is
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a real closed field. Conversely, if [C : F ] 5 2, then C 5 F 1 iF and g :
C → C defined by g(x 1 iy) 5 x 2 iy is an involutary automorphism of C,
different from the identity, and such that F 5 Fg.

Proposition 5. Let g be an involutary automorphism of C, different from
the identity. The g-Hermitian form on Cn

((xi)1#i#n, ( yi)1#i#n) → o
n

i51
xig(gi)

is defined.

Proof. Let y be a square root of the complex number x. We have

xg(x) 5 y2g( y2) 5 [yg( y)]2

Moreover, g[yg( y)] 5 yg( y) and so yg( y) P Fg. Therefore, for any x P C,
xg(x) is a square of an element of the real closed field Fg which is an ordered
field. Thus (n

i51 xig(xi) is a sum of squares of elements of Fg and (n
i51 xig(xi)

5 0 implies xi 5 0, i P [1, n]. The form is defined.
Now the problem is to determine the number of nonisomorphic real

closed subfields F of C such that [C : F ] 5 2. A result from model theory
will be useful.

4. THE MAIN RESULT

In ref. 7 the following definition is a characterization of an unstable
theory.

Definition 2 [7]. A first-order theory T in a language L is unstable if T
has a model M and if there exists a sequence (an)nPN of elements of M and
a formula f(x, y) of L such that, for every m, l,

M .5 f(am , al) ⇔ m # l

It is obvious that the theory of real closed fields is unstable: R is a
model of this theory and if f(x, y) is x # y and an 5 n, then R .5 f(am , al)
⇔ m # l.

The main result of ref. 7 states that an unstable theory possesses in any
uncountable cardinal a maximal number of models; precisely:

Proposition 6 [7]. If T is an unstable first-order theory in a denumerable
language, then T has 2l nonisomorphic models in every uncountable
cardinal l.

Theorem 1. For any integer n $ 3, there exist 2(2:0) nonisomorphic
structures of OMLs on the lattice of all subspaces of the vector space Cn.
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By Proposition 6, there exists a family (Fk)k,2(2:0) of pairwise nonisomor-
phic real closed fields of cardinal 2:0. As all the algebraically closed fields
of cardinal 2:0 are isomorphic, let fk be an isomorphism from the algebraically
closed field Fk[i] onto C. Since field isomorphisms between real closed fields
are also order isomorphisms, the real closed fields fk(Fk) constitute a set of
2(2:0) pairwise nonisomorphic real closed subfields of C satisfying C 5
fk(Fk)[i]. Propositions 3 and 5 complete the proof.

5. CONCLUDING REMARKS

1. Theorem 1 can be generalized to any infinite cardinal, but the proof
is different in the countable case. It can be also generalized to structures
related to OMLs: Baer; ∗-rings, orthosymmetric ortholattices, . . . [4].

2. The lattices of Theorem 1 are irreducible, modular, and of finite
height. By using direct products or pastings, one can obtain other lattices
carrying a maximal number of nonisomorphic structures of OMLs.

3. All the lattices with different orthomodular orthocomplementations
are infinite. Does there exist a finite lattice with different orthomodular
orthocomplementations?

4. Do, for n fixed, all the nonisomorphic OMLs of Theorem 1 satisfy
the same equations or the same first-order sentences?
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